Cargando…

A workflow for genome-wide mapping of archaeal transcription factors with ChIP-seq

Deciphering the structure of gene regulatory networks across the tree of life remains one of the major challenges in postgenomic biology. We present a novel ChIP-seq workflow for the archaea using the model organism Halobacterium salinarum sp. NRC-1 and demonstrate its application for mapping the ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilbanks, Elizabeth G., Larsen, David J., Neches, Russell Y., Yao, Andrew I., Wu, Chia-Ying, Kjolby, Rachel A. S., Facciotti, Marc T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378898/
https://www.ncbi.nlm.nih.gov/pubmed/22323522
http://dx.doi.org/10.1093/nar/gks063
Descripción
Sumario:Deciphering the structure of gene regulatory networks across the tree of life remains one of the major challenges in postgenomic biology. We present a novel ChIP-seq workflow for the archaea using the model organism Halobacterium salinarum sp. NRC-1 and demonstrate its application for mapping the genome-wide binding sites of natively expressed transcription factors. This end-to-end pipeline is the first protocol for ChIP-seq in archaea, with methods and tools for each stage from gene tagging to data analysis and biological discovery. Genome-wide binding sites for transcription factors with many binding sites (TfbD) are identified with sensitivity, while retaining specificity in the identification the smaller regulons (bacteriorhodopsin-activator protein). Chromosomal tagging of target proteins with a compact epitope facilitates a standardized and cost-effective workflow that is compatible with high-throughput immunoprecipitation of natively expressed transcription factors. The Pique package, an open-source bioinformatics method, is presented for identification of binding events. Relative to ChIP-Chip and qPCR, this workflow offers a robust catalog of protein–DNA binding events with improved spatial resolution and significantly decreased cost. While this study focuses on the application of ChIP-seq in H. salinarum sp. NRC-1, our workflow can also be adapted for use in other archaea and bacteria with basic genetic tools.