Cargando…

Reactive Oxygen Species Signaling Facilitates FOXO-3a/FBXO-Dependent Vascular BK Channel β(1) Subunit Degradation in Diabetic Mice

Activity of the vascular large conductance Ca(2+)-activated K(+) (BK) channel is tightly regulated by its accessory β(1) subunit (BK-β(1)). Downregulation of BK-β(1) expression in diabetic vessels is associated with upregulation of the forkhead box O subfamily transcription factor-3a (FOXO-3a)–depen...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Tong, Chai, Qiang, Yu, Ling, d’Uscio, Livius V., Katusic, Zvonimir S., He, Tongrong, Lee, Hon-Chi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379647/
https://www.ncbi.nlm.nih.gov/pubmed/22586590
http://dx.doi.org/10.2337/db11-1658
Descripción
Sumario:Activity of the vascular large conductance Ca(2+)-activated K(+) (BK) channel is tightly regulated by its accessory β(1) subunit (BK-β(1)). Downregulation of BK-β(1) expression in diabetic vessels is associated with upregulation of the forkhead box O subfamily transcription factor-3a (FOXO-3a)–dependent F-box–only protein (FBXO) expression. However, the upstream signaling regulating this process is unclear. Overproduction of reactive oxygen species (ROS) is a common finding in diabetic vasculopathy. We hypothesized that ROS signaling cascade facilitates the FOXO-3a/FBXO-mediated BK-β(1) degradation and leads to diabetic BK channel dysfunction. Using cellular biology, patch clamp, and videomicroscopy techniques, we found that reduced BK-β(1) expression in streptozotocin (STZ)-induced diabetic mouse arteries and in human coronary smooth muscle cells (SMCs) cultured with high glucose was attributable to an increase in protein kinase C (PKC)-β and NADPH oxidase expressions and accompanied by attenuation of Akt phosphorylation and augmentation of atrogin-1 expression. Treatment with ruboxistaurin (a PKCβ inhibitor) or with GW501516 (a peroxisome proliferator–activated receptor δ activator) reduced atrogin-1 expression and restored BK channel-mediated coronary vasodilation in diabetic mice. Our results suggested that oxidative stress inhibited Akt signaling and facilitated the FOXO-3a/FBXO-dependent BK-β(1) degradation in diabetic vessels. Suppression of the FOXO-3a/FBXO pathway prevented vascular BK-β(1) degradation and protected coronary function in diabetes.