Cargando…

Serum Apolipoproteins Are Associated With Systemic and Retinal Microvascular Function in People With Diabetes

Serum apolipoprotein (apo)AI and -B have been shown to be associated with diabetic retinopathy, but the underlying mechanisms are unclear. We investigated whether apoAI and apoB levels are associated with measures of systemic and retinal microvascular function in patients with diabetes. We recruited...

Descripción completa

Detalles Bibliográficos
Autores principales: Sasongko, Muhammad Bayu, Wong, Tien Y., Nguyen, Thanh T., Kawasaki, Ryo, Jenkins, Alicia J., Shaw, Jonathan, Robinson, Carol, Wang, Jie Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379684/
https://www.ncbi.nlm.nih.gov/pubmed/22511207
http://dx.doi.org/10.2337/db11-1272
Descripción
Sumario:Serum apolipoprotein (apo)AI and -B have been shown to be associated with diabetic retinopathy, but the underlying mechanisms are unclear. We investigated whether apoAI and apoB levels are associated with measures of systemic and retinal microvascular function in patients with diabetes. We recruited 224 diabetic patients (85 type 1 and 139 type 2) and assessed serum lipids and lipoproteins from fasting blood, skin responses to sodium nitroprusside (endothelium independent) and acetylcholine (ACh) (endothelium dependent) iontophoresis, flicker-light–induced retinal vasodilatation, and retinal vascular tortuosity. After adjustment for age and sex, every SD increase in apoAI level was associated with ACh-induced skin perfusion (mean change 1.27%; P < 0.001 for apoAI) and flicker-light retinal arteriolar vasodilatation (0.33%; P = 0.003) and was associated inversely with arteriolar tortuosity (−2.83 × 10(−5); P = 0.044). Each SD increase in apoB was associated with arteriolar tortuosity only (1.75 × 10(−5); P = 0.050). These associations, except for apoB, remained in multivariate models. Serum apoAI was associated with increased vasomotor responsiveness to ACh and flickering light and inversely related to retinal vessel tortuosity—a characteristic that has both structural and functional dimensions. These findings provide additional insights into the potential mechanisms of apos in the pathogenesis of diabetic retinopathy and other diabetic microvascular complications.