Cargando…

Mitochondrial Oxidative Phosphorylation Is Impaired in Patients with Congenital Lipodystrophy

OBJECTIVE: Lipid accumulation in skeletal muscle and the liver is strongly implicated in the development of insulin resistance and type 2 diabetes, but the mechanisms underpinning fat accrual in these sites remain incompletely understood. Accumulating evidence of muscle mitochondrial dysfunction in...

Descripción completa

Detalles Bibliográficos
Autores principales: Sleigh, Alison, Stears, Anna, Thackray, Kerrie, Watson, Laura, Gambineri, Alessandra, Nag, Sath, Campi, V. Irene, Schoenmakers, Nadia, Brage, Soren, Carpenter, T. Adrian, Murgatroyd, Peter R., O'Rahilly, Stephen, Kemp, Graham J., Savage, David B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Endocrine Society 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380089/
https://www.ncbi.nlm.nih.gov/pubmed/22238385
http://dx.doi.org/10.1210/jc.2011-2587
Descripción
Sumario:OBJECTIVE: Lipid accumulation in skeletal muscle and the liver is strongly implicated in the development of insulin resistance and type 2 diabetes, but the mechanisms underpinning fat accrual in these sites remain incompletely understood. Accumulating evidence of muscle mitochondrial dysfunction in insulin-resistant states has fuelled the notion that primary defects in mitochondrial fat oxidation may be a contributory mechanism. The purpose of our study was to determine whether patients with congenital lipodystrophy, a disorder primarily affecting white adipose tissue, manifest impaired mitochondrial oxidative phosphorylation in skeletal muscle. RESEARCH DESIGN AND METHODS: Mitochondrial oxidative phosphorylation was assessed in quadriceps muscle using (31)P-magnetic resonance spectroscopy measurements of phosphocreatine recovery kinetics after a standardized exercise bout in nondiabetic patients with congenital lipodystrophy and in age-, gender-, body mass index-, and fitness-matched controls. RESULTS: The phosphocreatine recovery rate constant (k) was significantly lower in patients with congenital lipodystrophy than in healthy controls (P < 0.001). This substantial (∼35%) defect in mitochondrial oxidative phosphorylation was not associated with significant changes in basal or sleeping metabolic rates. CONCLUSIONS: Muscle mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy, a paradigmatic example of primary adipose tissue dysfunction. This finding suggests that changes in mitochondrial oxidative phosphorylation in skeletal muscle could, at least in some circumstances, be a secondary consequence of adipose tissue failure. These data corroborate accumulating evidence that mitochondrial dysfunction can be a consequence of insulin-resistant states rather than a primary defect. Nevertheless, impaired mitochondrial fat oxidation is likely to accelerate ectopic fat accumulation and worsen insulin resistance.