Cargando…
An Automated Tracking Approach for Extraction of Retinal Vasculature in Fundus Images
PURPOSE: To present a novel automated method for tracking and detection of retinal blood vessels in fundus images. METHODS: For every pixel in retinal images, a feature vector was computed utilizing multiscale analysis based on Gabor filters. To classify the pixels based on their extracted features...
Autores principales: | Osareh, Alireza, Shadgar, Bita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ophthalmic Research Center
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380666/ https://www.ncbi.nlm.nih.gov/pubmed/22737322 |
Ejemplares similares
-
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering
por: Saffarzadeh, Vahid Mohammadi, et al.
Publicado: (2014) -
An Efficient Ensemble Learning Method for Gene Microarray Classification
por: Osareh, Alireza, et al.
Publicado: (2013) -
Fractal dimension of retinal vasculature as an image quality metric for automated fundus image analysis systems
por: Lyu, Xingzheng, et al.
Publicado: (2022) -
Automatic Segmentation and Measurement of Vasculature in Retinal Fundus Images Using Probabilistic Formulation
por: Yin, Yi, et al.
Publicado: (2013) -
Quantitative Analysis of Retinal Vasculature in Rhegmatogenous Retinal Detachment Based on Ultra-Widefield Fundus Imaging
por: Feng, Bingkai, et al.
Publicado: (2022)