Cargando…

Protein sequence classification using feature hashing

Recent advances in next-generation sequencing technologies have resulted in an exponential increase in the rate at which protein sequence data are being acquired. The k-gram feature representation, commonly used for protein sequence classification, usually results in prohibitively high dimensional i...

Descripción completa

Detalles Bibliográficos
Autores principales: Caragea, Cornelia, Silvescu, Adrian, Mitra, Prasenjit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380737/
https://www.ncbi.nlm.nih.gov/pubmed/22759572
http://dx.doi.org/10.1186/1477-5956-10-S1-S14
Descripción
Sumario:Recent advances in next-generation sequencing technologies have resulted in an exponential increase in the rate at which protein sequence data are being acquired. The k-gram feature representation, commonly used for protein sequence classification, usually results in prohibitively high dimensional input spaces, for large values of k. Applying data mining algorithms to these input spaces may be intractable due to the large number of dimensions. Hence, using dimensionality reduction techniques can be crucial for the performance and the complexity of the learning algorithms. In this paper, we study the applicability of feature hashing to protein sequence classification, where the original high-dimensional space is "reduced" by hashing the features into a low-dimensional space, using a hash function, i.e., by mapping features into hash keys, where multiple features can be mapped (at random) to the same hash key, and "aggregating" their counts. We compare feature hashing with the "bag of k-grams" approach. Our results show that feature hashing is an effective approach to reducing dimensionality on protein sequence classification tasks.