Cargando…
Protein sequence classification using feature hashing
Recent advances in next-generation sequencing technologies have resulted in an exponential increase in the rate at which protein sequence data are being acquired. The k-gram feature representation, commonly used for protein sequence classification, usually results in prohibitively high dimensional i...
Autores principales: | Caragea, Cornelia, Silvescu, Adrian, Mitra, Prasenjit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380737/ https://www.ncbi.nlm.nih.gov/pubmed/22759572 http://dx.doi.org/10.1186/1477-5956-10-S1-S14 |
Ejemplares similares
-
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models
por: Caragea, Cornelia, et al.
Publicado: (2010) -
Accelerating read mapping with FastHASH
por: Xin, Hongyi, et al.
Publicado: (2013) -
Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling
por: Caragea, Cornelia, et al.
Publicado: (2009) -
Glycosylation site prediction using ensembles of Support Vector Machine classifiers
por: Caragea, Cornelia, et al.
Publicado: (2007) -
Perfect Hamming code with a hash table for faster genome mapping
por: Takenaka, Yoichi, et al.
Publicado: (2011)