Cargando…
A Scalable Algorithm to Explore the Gibbs Energy Landscape of Genome-Scale Metabolic Networks
The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at...
Autores principales: | De Martino, Daniele, Figliuzzi, Matteo, De Martino, Andrea, Marinari, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380848/ https://www.ncbi.nlm.nih.gov/pubmed/22737065 http://dx.doi.org/10.1371/journal.pcbi.1002562 |
Ejemplares similares
-
Counting and Correcting Thermodynamically Infeasible Flux Cycles in Genome-Scale Metabolic Networks
por: De Martino, Daniele, et al.
Publicado: (2013) -
Probing the Limits to MicroRNA-Mediated Control of Gene Expression
por: Martirosyan, Araks, et al.
Publicado: (2016) -
Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides
por: Schweitzer-Stenner, Reinhard
Publicado: (2022) -
Quantitative constraint-based computational model of tumor-to-stroma coupling via lactate shuttle
por: Capuani, Fabrizio, et al.
Publicado: (2015) -
A yield-cost tradeoff governs Escherichia coli’s decision between fermentation and respiration in carbon-limited growth
por: Mori, Matteo, et al.
Publicado: (2019)