Cargando…

Capsaicin Blocks the Hyperpolarization-Activated Inward Currents via TRPV1 in the Rat Dorsal Root Ganglion Neurons

Capsaicin, the pungent ingredient in hot pepper, activates nociceptors to produce pain and inflammation. However, prolonged exposures of capsaicin will cause desensitization to nociceptive stimuli. Hyperpolarization-activated cation currents (I(h)) contribute to the maintenance of the resting membra...

Descripción completa

Detalles Bibliográficos
Autor principal: Kwak, Jiyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Brain and Neural Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381215/
https://www.ncbi.nlm.nih.gov/pubmed/22792028
http://dx.doi.org/10.5607/en.2012.21.2.75
Descripción
Sumario:Capsaicin, the pungent ingredient in hot pepper, activates nociceptors to produce pain and inflammation. However, prolonged exposures of capsaicin will cause desensitization to nociceptive stimuli. Hyperpolarization-activated cation currents (I(h)) contribute to the maintenance of the resting membrane potential and excitability of neurons. In the cultured dorsal root ganglion (DRG) neurons, we investigated mechanisms underlying capsaicin-mediated modulation of I(h) using patch clamp recordings. Capsaicin (1 µM) inhibited I(h) only in the capsaicin-sensitive neurons. The capsaicin-induced inhibition of I(h) was prevented by preexposing the TRPV1 antagonist, capsazepine (CPZ). Capsaicin-induced inhibition of I(h) was dose dependent (IC(50)= 0.68 µM) and partially abolished by intracellular BAPTA and cyclosporin A, specific calcineurin inhibitor. In summary, the inhibitory effects of capsaicin on I(h) are mediated by activation of TRPV1 and Ca(2+)-triggered cellular responses. Analgesic effects of capsaicin have been thought to be related to desensitization of nociceptive neurons due to depletion of pain-related substances. In addition, capsaicin-induced inhibition of I(h) is likely to be important in understanding the analgesic mechanism of capsaicin.