Cargando…
Recurrent network of perceptrons with three state synapses achieves competitive classification on real inputs
We describe an attractor network of binary perceptrons receiving inputs from a retinotopic visual feature layer. Each class is represented by a random subpopulation of the attractor layer, which is turned on in a supervised manner during learning of the feed forward connections. These are discrete t...
Autores principales: | Amit, Yali, Walker, Jacob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381280/ https://www.ncbi.nlm.nih.gov/pubmed/22737121 http://dx.doi.org/10.3389/fncom.2012.00039 |
Ejemplares similares
-
DNA Input Classification by a Riboregulator-Based
Cell-Free Perceptron
por: van der Linden, Ardjan J., et al.
Publicado: (2022) -
Perceptron Learning and Classification in a Modeled Cortical Pyramidal Cell
por: Moldwin, Toviah, et al.
Publicado: (2020) -
Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs
por: Du, Nan, et al.
Publicado: (2021) -
Human Activity Classification Using Multilayer Perceptron
por: Majidzadeh Gorjani, Ojan, et al.
Publicado: (2021) -
Single-layer perceptron artificial visual system for orientation detection
por: Todo, Hiroyoshi, et al.
Publicado: (2023)