Cargando…
Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks
Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167–173, 2011). Although the integration of control theory and network an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382243/ https://www.ncbi.nlm.nih.gov/pubmed/22761682 http://dx.doi.org/10.1371/journal.pone.0038398 |
_version_ | 1782236475722563584 |
---|---|
author | Cowan, Noah J. Chastain, Erick J. Vilhena, Daril A. Freudenberg, James S. Bergstrom, Carl T. |
author_facet | Cowan, Noah J. Chastain, Erick J. Vilhena, Daril A. Freudenberg, James S. Bergstrom, Carl T. |
author_sort | Cowan, Noah J. |
collection | PubMed |
description | Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167–173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set, is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations. |
format | Online Article Text |
id | pubmed-3382243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33822432012-07-03 Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks Cowan, Noah J. Chastain, Erick J. Vilhena, Daril A. Freudenberg, James S. Bergstrom, Carl T. PLoS One Research Article Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167–173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set, is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations. Public Library of Science 2012-06-22 /pmc/articles/PMC3382243/ /pubmed/22761682 http://dx.doi.org/10.1371/journal.pone.0038398 Text en Cowan et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cowan, Noah J. Chastain, Erick J. Vilhena, Daril A. Freudenberg, James S. Bergstrom, Carl T. Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks |
title | Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks |
title_full | Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks |
title_fullStr | Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks |
title_full_unstemmed | Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks |
title_short | Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks |
title_sort | nodal dynamics, not degree distributions, determine the structural controllability of complex networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382243/ https://www.ncbi.nlm.nih.gov/pubmed/22761682 http://dx.doi.org/10.1371/journal.pone.0038398 |
work_keys_str_mv | AT cowannoahj nodaldynamicsnotdegreedistributionsdeterminethestructuralcontrollabilityofcomplexnetworks AT chastainerickj nodaldynamicsnotdegreedistributionsdeterminethestructuralcontrollabilityofcomplexnetworks AT vilhenadarila nodaldynamicsnotdegreedistributionsdeterminethestructuralcontrollabilityofcomplexnetworks AT freudenbergjamess nodaldynamicsnotdegreedistributionsdeterminethestructuralcontrollabilityofcomplexnetworks AT bergstromcarlt nodaldynamicsnotdegreedistributionsdeterminethestructuralcontrollabilityofcomplexnetworks |