Cargando…
Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs
In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI) data. The technique uses a trained support vector machine (SVM) to discriminate between the blocks in regions of MS lesions and the blocks in non-MS le...
Autores principales: | Abdullah, Bassem A, Younis, Akmal A, John, Nigel M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382289/ https://www.ncbi.nlm.nih.gov/pubmed/22741026 http://dx.doi.org/10.2174/1874230001206010056 |
Ejemplares similares
-
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
por: Weiss, David A., et al.
Publicado: (2021) -
Automatic breast lesion segmentation in phase preserved DCE-MRIs
por: Pandey, Dinesh, et al.
Publicado: (2022) -
Automatic brain lesion segmentation on standard MRIs of the human head: a scoping review protocol
por: Gryska, Emilia Agnieszka, et al.
Publicado: (2019) -
A Comprehensive Corpus Callosum Segmentation Tool for Detecting Callosal Abnormalities and Genetic Associations from Multi Contrast MRIs
por: Gadewar, Shruti P., et al.
Publicado: (2023) -
Feature Selection Based on Machine Learning in MRIs for Hippocampal Segmentation
por: Tangaro, Sabina, et al.
Publicado: (2015)