Cargando…
Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge
BACKGROUND: Identification of active causal regulators is a crucial problem in understanding mechanism of diseases or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and successfully validated in some cases. These methods necessarily require v...
Autores principales: | Huang, Chia-Ling, Lamb, John, Chindelevitch, Leonid, Kostrowicki, Jarek, Guinney, Justin, DeLisi, Charles, Ziemek, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382432/ https://www.ncbi.nlm.nih.gov/pubmed/22443377 http://dx.doi.org/10.1186/1471-2105-13-46 |
Ejemplares similares
-
Assessing statistical significance in causal graphs
por: Chindelevitch, Leonid, et al.
Publicado: (2012) -
Aristotle: stratified causal discovery for omics data
por: Mansouri, Mehrdad, et al.
Publicado: (2022) -
Prior knowledge driven Granger causality analysis on gene regulatory network discovery
por: Yao, Shun, et al.
Publicado: (2015) -
Gene annotation and network inference by phylogenetic profiling
por: Wu, Jie, et al.
Publicado: (2006) -
Characterization of the Effectiveness of Reporting Lists of Small Feature Sets Relative to the Accuracy of the Prior Biological Knowledge
por: Zhao, Chen, et al.
Publicado: (2010)