Cargando…
Comparative evaluation of set-level techniques in predictive classification of gene expression samples
BACKGROUND: Analysis of gene expression data in terms of a priori-defined gene sets has recently received significant attention as this approach typically yields more compact and interpretable results than those produced by traditional methods that rely on individual genes. The set-level strategy ca...
Autores principales: | Holec, Matěj, Kléma, Jiří, Železný, Filip, Tolar, Jakub |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382436/ https://www.ncbi.nlm.nih.gov/pubmed/22759420 http://dx.doi.org/10.1186/1471-2105-13-S10-S15 |
Ejemplares similares
-
Novel gene sets improve set-level classification of prokaryotic gene expression data
por: Holec, Matěj, et al.
Publicado: (2015) -
Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search
por: Szabóová, Andrea, et al.
Publicado: (2012) -
Semantic biclustering for finding local, interpretable and predictive expression patterns
por: Kléma, Jiří, et al.
Publicado: (2017) -
Finding semantic patterns in omics data using concept rule learning with an ontology-based refinement operator
por: Malinka, František, et al.
Publicado: (2020) -
Prediction of DNA-binding proteins from relational features
por: Szabóová, Andrea, et al.
Publicado: (2012)