Cargando…

Intramolecular Folding in Human ILPR Fragment with Three C-Rich Repeats

Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhakal, Soma, Lafontaine, Javonne L., Yu, Zhongbo, Koirala, Deepak, Mao, Hanbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382603/
https://www.ncbi.nlm.nih.gov/pubmed/22761750
http://dx.doi.org/10.1371/journal.pone.0039271
Descripción
Sumario:Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br(2) footprinting experiments on a mixture of the ILPR-I3 and a 5′-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures.