Cargando…
Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line
BACKGROUND: Multidrug resistance is the main obstacle to the efficiency of systemic chemotherapy against hematologic malignancy. This study investigated the reversible effect of the copolymer wogonin and daunorubicin coloaded into Fe(3)O(4) magnetic nanoparticles, and the mechanism potentially invol...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383324/ https://www.ncbi.nlm.nih.gov/pubmed/22745547 http://dx.doi.org/10.2147/IJN.S32065 |
_version_ | 1782236609036419072 |
---|---|
author | Cheng, Jian Cheng, Lin Chen, Baoan Xia, Guohua Gao, Chong Song, Huihui Bao, Wen Guo, Qinglong Zhang, Haiwei Wang, Xuemei |
author_facet | Cheng, Jian Cheng, Lin Chen, Baoan Xia, Guohua Gao, Chong Song, Huihui Bao, Wen Guo, Qinglong Zhang, Haiwei Wang, Xuemei |
author_sort | Cheng, Jian |
collection | PubMed |
description | BACKGROUND: Multidrug resistance is the main obstacle to the efficiency of systemic chemotherapy against hematologic malignancy. This study investigated the reversible effect of the copolymer wogonin and daunorubicin coloaded into Fe(3)O(4) magnetic nanoparticles, and the mechanism potentially involved. METHODS: The growth inhibition rate of K562/A02 cells was investigated by MTT assay, and apoptosis of cells and the intracellular daunorubicin concentration were detected by flow cytometry. Distribution of nanoparticles taken up by K562/A02 cells was observed under a transmission electron microscope and demonstrated by Prussian blue staining. The transcription level of MDR1 mRNA and expression of P-glycoprotein were determined by reverse transcriptase polymerase chain reaction and Western blotting assay, respectively. RESULTS: The reversible effect of daunorubicin-wogonin magnetic nanoparticles was 8.87-fold that of daunorubicin + wogonin and of daunorubicin magnetic nanoparticles. Transmission electron microscopy and Prussian blue staining revealed that the nanoparticles were located in the endosome vesicles of cytoplasm. Also, the apoptosis rate and accumulation of intracellular daunorubicin in the daunorubicin-wogonin magnetic nanoparticle group were significantly higher than that in the daunorubicin, daunorubicin + wogonin, and daunorubicin magnetic nanoparticle groups. Furthermore, transcription of MDR1 mRNA and expression of P-glycoprotein in K562/A02 cells were significantly downregulated in the daunorubicin-wogonin magnetic nanoparticle group compared with the other groups. CONCLUSION: These findings suggest that the remarkable effects of the novel daunorubicin-wogonin magnetic nanoparticle formulation on multidrug resistant K562/A02 leukemia cells would be a promising strategy for overcoming multidrug resistance. |
format | Online Article Text |
id | pubmed-3383324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33833242012-06-28 Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line Cheng, Jian Cheng, Lin Chen, Baoan Xia, Guohua Gao, Chong Song, Huihui Bao, Wen Guo, Qinglong Zhang, Haiwei Wang, Xuemei Int J Nanomedicine Original Research BACKGROUND: Multidrug resistance is the main obstacle to the efficiency of systemic chemotherapy against hematologic malignancy. This study investigated the reversible effect of the copolymer wogonin and daunorubicin coloaded into Fe(3)O(4) magnetic nanoparticles, and the mechanism potentially involved. METHODS: The growth inhibition rate of K562/A02 cells was investigated by MTT assay, and apoptosis of cells and the intracellular daunorubicin concentration were detected by flow cytometry. Distribution of nanoparticles taken up by K562/A02 cells was observed under a transmission electron microscope and demonstrated by Prussian blue staining. The transcription level of MDR1 mRNA and expression of P-glycoprotein were determined by reverse transcriptase polymerase chain reaction and Western blotting assay, respectively. RESULTS: The reversible effect of daunorubicin-wogonin magnetic nanoparticles was 8.87-fold that of daunorubicin + wogonin and of daunorubicin magnetic nanoparticles. Transmission electron microscopy and Prussian blue staining revealed that the nanoparticles were located in the endosome vesicles of cytoplasm. Also, the apoptosis rate and accumulation of intracellular daunorubicin in the daunorubicin-wogonin magnetic nanoparticle group were significantly higher than that in the daunorubicin, daunorubicin + wogonin, and daunorubicin magnetic nanoparticle groups. Furthermore, transcription of MDR1 mRNA and expression of P-glycoprotein in K562/A02 cells were significantly downregulated in the daunorubicin-wogonin magnetic nanoparticle group compared with the other groups. CONCLUSION: These findings suggest that the remarkable effects of the novel daunorubicin-wogonin magnetic nanoparticle formulation on multidrug resistant K562/A02 leukemia cells would be a promising strategy for overcoming multidrug resistance. Dove Medical Press 2012 2012-06-08 /pmc/articles/PMC3383324/ /pubmed/22745547 http://dx.doi.org/10.2147/IJN.S32065 Text en © 2012 Cheng et al, publisher and licensee Dove Medical Press Ltd This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Cheng, Jian Cheng, Lin Chen, Baoan Xia, Guohua Gao, Chong Song, Huihui Bao, Wen Guo, Qinglong Zhang, Haiwei Wang, Xuemei Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line |
title | Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line |
title_full | Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line |
title_fullStr | Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line |
title_full_unstemmed | Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line |
title_short | Effect of magnetic nanoparticles of Fe(3)O(4) and wogonin on the reversal of multidrug resistance in K562/A02 cell line |
title_sort | effect of magnetic nanoparticles of fe(3)o(4) and wogonin on the reversal of multidrug resistance in k562/a02 cell line |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383324/ https://www.ncbi.nlm.nih.gov/pubmed/22745547 http://dx.doi.org/10.2147/IJN.S32065 |
work_keys_str_mv | AT chengjian effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT chenglin effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT chenbaoan effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT xiaguohua effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT gaochong effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT songhuihui effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT baowen effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT guoqinglong effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT zhanghaiwei effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline AT wangxuemei effectofmagneticnanoparticlesoffe3o4andwogoninonthereversalofmultidrugresistanceink562a02cellline |