Cargando…
CRISPR/Cas systems in archaea: What array spacers can teach us about parasitism and gene exchange in the 3rd domain of life
CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci have been shown to provide prokaryotes with an adaptive immunity against viruses and plasmids. CRISPR arrays are transcribed and processed into small CRISPR RNA molecules, which base-pair with invading DNA or RNA and lead to...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383453/ https://www.ncbi.nlm.nih.gov/pubmed/22754756 http://dx.doi.org/10.4161/mge.19907 |
Sumario: | CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci have been shown to provide prokaryotes with an adaptive immunity against viruses and plasmids. CRISPR arrays are transcribed and processed into small CRISPR RNA molecules, which base-pair with invading DNA or RNA and lead to its degradation by CRISPR-associated (Cas) protein complexes. New spacers can be acquired by active CRISPR/Cas systems, and thus the sequences of these spacers provide a record of the past “infection history” of the organism. Recently we used spacer sequences from archaeal genomes to infer gene exchange events among archaeal species and genera and to demonstrate that at least in this domain of life CRISPR indeed has an anti-viral role. |
---|