Cargando…
Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis
BACKGROUND: High-throughput methods for obtaining global measurements of transcript and protein levels in biological samples has provided a large amount of data for identification of 'target' genes and proteins of interest. These targets may be mediators of functional processes involved in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383540/ https://www.ncbi.nlm.nih.gov/pubmed/22546282 http://dx.doi.org/10.1186/1752-0509-6-28 |
_version_ | 1782236625897521152 |
---|---|
author | McDermott, Jason E Diamond, Deborah L Corley, Courtney Rasmussen, Angela L Katze, Michael G Waters, Katrina M |
author_facet | McDermott, Jason E Diamond, Deborah L Corley, Courtney Rasmussen, Angela L Katze, Michael G Waters, Katrina M |
author_sort | McDermott, Jason E |
collection | PubMed |
description | BACKGROUND: High-throughput methods for obtaining global measurements of transcript and protein levels in biological samples has provided a large amount of data for identification of 'target' genes and proteins of interest. These targets may be mediators of functional processes involved in disease and therefore represent key points of control for viruses and bacterial pathogens. Genes and proteins that are the most highly differentially regulated are generally considered to be the most important. We present topological analysis of co-abundance networks as an alternative to differential regulation for confident identification of target proteins from two related global proteomics studies of hepatitis C virus (HCV) infection. RESULTS: We analyzed global proteomics data sets from a cell culture study of HCV infection and from a clinical study of liver biopsies from HCV-positive patients. Using lists of proteins known to be interaction partners with pathogen proteins we show that the most differentially regulated proteins in both data sets are indeed enriched in pathogen interactors. We then use these data sets to generate co-abundance networks that link proteins based on similar abundance patterns in time or across patients. Analysis of these co-abundance networks using a variety of network topology measures revealed that both degree and betweenness could be used to identify pathogen interactors with better accuracy than differential regulation alone, though betweenness provides the best discrimination. We found that though overall differential regulation was not correlated between the cell culture and liver biopsy data, network topology was conserved to an extent. Finally, we identified a set of proteins that has high betweenness topology in both networks including a protein that we have recently shown to be essential for HCV replication in cell culture. CONCLUSIONS: The results presented show that the network topology of protein co-abundance networks can be used to identify proteins important for viral replication. These proteins represent targets for further experimental investigation that will provide biological insight and potentially could be exploited for novel therapeutic approaches to combat HCV infection. |
format | Online Article Text |
id | pubmed-3383540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33835402012-06-28 Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis McDermott, Jason E Diamond, Deborah L Corley, Courtney Rasmussen, Angela L Katze, Michael G Waters, Katrina M BMC Syst Biol Research Article BACKGROUND: High-throughput methods for obtaining global measurements of transcript and protein levels in biological samples has provided a large amount of data for identification of 'target' genes and proteins of interest. These targets may be mediators of functional processes involved in disease and therefore represent key points of control for viruses and bacterial pathogens. Genes and proteins that are the most highly differentially regulated are generally considered to be the most important. We present topological analysis of co-abundance networks as an alternative to differential regulation for confident identification of target proteins from two related global proteomics studies of hepatitis C virus (HCV) infection. RESULTS: We analyzed global proteomics data sets from a cell culture study of HCV infection and from a clinical study of liver biopsies from HCV-positive patients. Using lists of proteins known to be interaction partners with pathogen proteins we show that the most differentially regulated proteins in both data sets are indeed enriched in pathogen interactors. We then use these data sets to generate co-abundance networks that link proteins based on similar abundance patterns in time or across patients. Analysis of these co-abundance networks using a variety of network topology measures revealed that both degree and betweenness could be used to identify pathogen interactors with better accuracy than differential regulation alone, though betweenness provides the best discrimination. We found that though overall differential regulation was not correlated between the cell culture and liver biopsy data, network topology was conserved to an extent. Finally, we identified a set of proteins that has high betweenness topology in both networks including a protein that we have recently shown to be essential for HCV replication in cell culture. CONCLUSIONS: The results presented show that the network topology of protein co-abundance networks can be used to identify proteins important for viral replication. These proteins represent targets for further experimental investigation that will provide biological insight and potentially could be exploited for novel therapeutic approaches to combat HCV infection. BioMed Central 2012-04-30 /pmc/articles/PMC3383540/ /pubmed/22546282 http://dx.doi.org/10.1186/1752-0509-6-28 Text en Copyright ©2012 McDermott et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article McDermott, Jason E Diamond, Deborah L Corley, Courtney Rasmussen, Angela L Katze, Michael G Waters, Katrina M Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis |
title | Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis |
title_full | Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis |
title_fullStr | Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis |
title_full_unstemmed | Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis |
title_short | Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis |
title_sort | topological analysis of protein co-abundance networks identifies novel host targets important for hcv infection and pathogenesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383540/ https://www.ncbi.nlm.nih.gov/pubmed/22546282 http://dx.doi.org/10.1186/1752-0509-6-28 |
work_keys_str_mv | AT mcdermottjasone topologicalanalysisofproteincoabundancenetworksidentifiesnovelhosttargetsimportantforhcvinfectionandpathogenesis AT diamonddeborahl topologicalanalysisofproteincoabundancenetworksidentifiesnovelhosttargetsimportantforhcvinfectionandpathogenesis AT corleycourtney topologicalanalysisofproteincoabundancenetworksidentifiesnovelhosttargetsimportantforhcvinfectionandpathogenesis AT rasmussenangelal topologicalanalysisofproteincoabundancenetworksidentifiesnovelhosttargetsimportantforhcvinfectionandpathogenesis AT katzemichaelg topologicalanalysisofproteincoabundancenetworksidentifiesnovelhosttargetsimportantforhcvinfectionandpathogenesis AT waterskatrinam topologicalanalysisofproteincoabundancenetworksidentifiesnovelhosttargetsimportantforhcvinfectionandpathogenesis |