Cargando…

Characterization of Plasmodium falciparum Adenylyl Cyclase-β and Its Role in Erythrocytic Stage Parasites

The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has been shown to be important for the parasite’s ability to infect the host’s liver, but its role during parasite growth inside erythrocytes, the stage responsible for symptomatic malari...

Descripción completa

Detalles Bibliográficos
Autores principales: Salazar, Eric, Bank, Erin M., Ramsey, Nicole, Hess, Kenneth C., Deitsch, Kirk W., Levin, Lonny R., Buck, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383692/
https://www.ncbi.nlm.nih.gov/pubmed/22761895
http://dx.doi.org/10.1371/journal.pone.0039769
Descripción
Sumario:The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has been shown to be important for the parasite’s ability to infect the host’s liver, but its role during parasite growth inside erythrocytes, the stage responsible for symptomatic malaria, is less clear. The P. falciparum genome encodes two adenylyl cyclases, the enzymes that synthesize cAMP, PfACα and PfACβ. We now show that one of these, PfACβ, plays an important role during the erythrocytic stage of the P. falciparum life cycle. Biochemical characterization of PfACβ revealed a marked pH dependence, and sensitivity to a number of small molecule inhibitors. These inhibitors kill parasites growing inside red blood cells. One particular inhibitor is selective for PfACβ relative to its human ortholog, soluble adenylyl cyclase (sAC); thus, PfACβ represents a potential target for development of safe and effective antimalarial therapeutics.