Cargando…
Combined SVM-CRFs for Biological Named Entity Recognition with Maximal Bidirectional Squeezing
Biological named entity recognition, the identification of biological terms in text, is essential for biomedical information extraction. Machine learning-based approaches have been widely applied in this area. However, the recognition performance of current approaches could still be improved. Our no...
Autores principales: | Zhu, Fei, Shen, Bairong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383748/ https://www.ncbi.nlm.nih.gov/pubmed/22745720 http://dx.doi.org/10.1371/journal.pone.0039230 |
Ejemplares similares
-
Wide-scope biomedical named entity recognition and normalization with CRFs, fuzzy matching and character level modeling
por: Kaewphan, Suwisa, et al.
Publicado: (2018) -
Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks
por: Wei, Qikang, et al.
Publicado: (2016) -
BCC-NER: bidirectional, contextual clues named entity tagger for gene/protein mention recognition
por: Murugesan, Gurusamy, et al.
Publicado: (2017) -
Improving biomedical named entity recognition with syntactic information
por: Tian, Yuanhe, et al.
Publicado: (2020) -
Multi-level Memory Network with CRFs for Keyphrase Extraction
por: Zhou, Tao, et al.
Publicado: (2020)