Cargando…

Effects of genetic deletion of the Kv4.2 voltage-gated potassium channel on murine anxiety-, fear- and stress-related behaviors

BACKGROUND: Potassium channels have been proposed to play a role in mechanisms of neural plasticity, and the Kv4.2 subunit has been implicated in the regulation of action-potential back-propagation to the dendrites. Alterations in mechanisms of plasticity have been further proposed to underlie vario...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiselycznyk, Carly, Hoffman, Dax A, Holmes, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384232/
https://www.ncbi.nlm.nih.gov/pubmed/22738428
http://dx.doi.org/10.1186/2045-5380-2-5
Descripción
Sumario:BACKGROUND: Potassium channels have been proposed to play a role in mechanisms of neural plasticity, and the Kv4.2 subunit has been implicated in the regulation of action-potential back-propagation to the dendrites. Alterations in mechanisms of plasticity have been further proposed to underlie various psychiatric disorders, but the role of Kv4.2 in anxiety or depression is not well understood. METHODS: In this paper, we analyzed the phenotype Kv4.2 knockout mice based on their neurological function, on a battery of behaviors including those related to anxiety and depression, and on plasticity-related learning tasks. RESULTS: We found a novelty-induced hyperactive phenotype in knockout mice, and these mice also displayed increased reactivity to novel stimulus such as an auditory tone. No clear anxiety- or depression-related phenotype was observed, nor any alterations in learning/plasticity-based paradigms. CONCLUSIONS: We did not find clear evidence for an involvement of Kv4.2 in neuropsychiatric or plasticity-related phenotypes, but there was support for a role in Kv4.2 in dampening excitatory responses to novel stimuli.