Cargando…
Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers
Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384321/ https://www.ncbi.nlm.nih.gov/pubmed/22387464 http://dx.doi.org/10.1093/nar/gks199 |
_version_ | 1782236694113681408 |
---|---|
author | Bultmann, Sebastian Morbitzer, Robert Schmidt, Christine S. Thanisch, Katharina Spada, Fabio Elsaesser, Janett Lahaye, Thomas Leonhardt, Heinrich |
author_facet | Bultmann, Sebastian Morbitzer, Robert Schmidt, Christine S. Thanisch, Katharina Spada, Fabio Elsaesser, Janett Lahaye, Thomas Leonhardt, Heinrich |
author_sort | Bultmann, Sebastian |
collection | PubMed |
description | Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2′-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes. |
format | Online Article Text |
id | pubmed-3384321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33843212012-06-28 Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers Bultmann, Sebastian Morbitzer, Robert Schmidt, Christine S. Thanisch, Katharina Spada, Fabio Elsaesser, Janett Lahaye, Thomas Leonhardt, Heinrich Nucleic Acids Res Gene Regulation, Chromatin and Epigenetics Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2′-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes. Oxford University Press 2012-07 2012-03-12 /pmc/articles/PMC3384321/ /pubmed/22387464 http://dx.doi.org/10.1093/nar/gks199 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Gene Regulation, Chromatin and Epigenetics Bultmann, Sebastian Morbitzer, Robert Schmidt, Christine S. Thanisch, Katharina Spada, Fabio Elsaesser, Janett Lahaye, Thomas Leonhardt, Heinrich Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers |
title | Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers |
title_full | Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers |
title_fullStr | Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers |
title_full_unstemmed | Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers |
title_short | Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers |
title_sort | targeted transcriptional activation of silent oct4 pluripotency gene by combining designer tales and inhibition of epigenetic modifiers |
topic | Gene Regulation, Chromatin and Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384321/ https://www.ncbi.nlm.nih.gov/pubmed/22387464 http://dx.doi.org/10.1093/nar/gks199 |
work_keys_str_mv | AT bultmannsebastian targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers AT morbitzerrobert targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers AT schmidtchristines targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers AT thanischkatharina targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers AT spadafabio targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers AT elsaesserjanett targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers AT lahayethomas targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers AT leonhardtheinrich targetedtranscriptionalactivationofsilentoct4pluripotencygenebycombiningdesignertalesandinhibitionofepigeneticmodifiers |