Cargando…
Intracellular stability of 2′-OMe-4′-thioribonucleoside modified siRNA leads to long-term RNAi effect
Chemically modified siRNAs are expected to have resistance toward nuclease degradation and good thermal stability in duplex formation for in vivo applications. We have recently found that 2′-OMe-4′-thioRNA, a hybrid chemical modification based on 2′-OMeRNA and 4′-thioRNA, has high hybridization affi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384325/ https://www.ncbi.nlm.nih.gov/pubmed/22411910 http://dx.doi.org/10.1093/nar/gks204 |
Sumario: | Chemically modified siRNAs are expected to have resistance toward nuclease degradation and good thermal stability in duplex formation for in vivo applications. We have recently found that 2′-OMe-4′-thioRNA, a hybrid chemical modification based on 2′-OMeRNA and 4′-thioRNA, has high hybridization affinity for complementary RNA and significant resistance toward degradation in human plasma. These results prompted us to develop chemically modified siRNAs using 2′-OMe-4′-thioribonucleosides for therapeutic application. Effective modification patterns were screened with a luciferase reporter assay. The best modification pattern of siRNA, which conferred duration of the gene-silencing effect without loss of RNAi activity, was identified. Quantification of the remaining siRNA in HeLa-luc cells using a Heat-in-Triton (HIT) qRT–PCR revealed that the intracellular stability of the siRNA modified with 2′-OMe-4′-thioribonucleosides contributed significantly to the duration of its RNAi activity. |
---|