Cargando…

Kar3Vik1, a member of the Kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern

Kinesin-14 motors generate microtubule minus-end–directed force used in mitosis and meiosis. These motors are dimeric and operate with a nonprocessive powerstroke mechanism, but the role of the second head in motility has been unclear. In Saccharomyces cerevisiae, the Kinesin-14 Kar3 forms a heterod...

Descripción completa

Detalles Bibliográficos
Autores principales: Rank, Katherine C., Chen, Chun Ju, Cope, Julia, Porche, Ken, Hoenger, Andreas, Gilbert, Susan P., Rayment, Ivan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384419/
https://www.ncbi.nlm.nih.gov/pubmed/22734002
http://dx.doi.org/10.1083/jcb.201201132
Descripción
Sumario:Kinesin-14 motors generate microtubule minus-end–directed force used in mitosis and meiosis. These motors are dimeric and operate with a nonprocessive powerstroke mechanism, but the role of the second head in motility has been unclear. In Saccharomyces cerevisiae, the Kinesin-14 Kar3 forms a heterodimer with either Vik1 or Cik1. Vik1 contains a motor homology domain that retains microtubule binding properties but lacks a nucleotide binding site. In this case, both heads are implicated in motility. Here, we show through structural determination of a C-terminal heterodimeric Kar3Vik1, electron microscopy, equilibrium binding, and motility that at the start of the cycle, Kar3Vik1 binds to or occludes two αβ-tubulin subunits on adjacent protofilaments. The cycle begins as Vik1 collides with the microtubule followed by Kar3 microtubule association and ADP release, thereby destabilizing the Vik1–microtubule interaction and positioning the motor for the start of the powerstroke. The results indicate that head–head communication is mediated through the adjoining coiled coil.