Cargando…
Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing
Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRNA and snoRNA biogenesis, pre-mRNA processing, and the rapid decay of cryptic intergenic transcripts. In contrast to its yeast counterpart, the mammalian nuclear decay machinery is largely uncharacterized...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384585/ https://www.ncbi.nlm.nih.gov/pubmed/22336707 http://dx.doi.org/10.4161/rna.19431 |
Sumario: | Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRNA and snoRNA biogenesis, pre-mRNA processing, and the rapid decay of cryptic intergenic transcripts. In contrast to its yeast counterpart, the mammalian nuclear decay machinery is largely uncharacterized. Here we report interactions of several putative components of the human nuclear RNA decay machinery, including the TRAMP complex protein Mtr4 and the nuclear exosome constituents PM/Scl-100 and PM/Scl-75, with components of the U4/U6.U5 tri-snRNP complex required for pre-mRNA splicing. The tri-snRNP component Prp31 interacts indirectly with Mtr4 and PM/Scl-100 in a manner that is dependent on the phosphorylation sites in the middle of the protein, while Prp3 and Prp4 interact with the nuclear decay complex independent of Prp31. Together our results suggest recruitment of the nuclear decay machinery to the spliceosome to ensure production of properly spliced mRNA. |
---|