Cargando…

Detection of Ligation Products of DNA Linkers with 5′-OH Ends by Denaturing PAGE Silver Stain

To explore if DNA linkers with 5′-hydroxyl (OH) ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denatur...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Feng, Zhou, Huafu, Li, Wei, Zhang, Xuerong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384673/
https://www.ncbi.nlm.nih.gov/pubmed/22761747
http://dx.doi.org/10.1371/journal.pone.0039251
Descripción
Sumario:To explore if DNA linkers with 5′-hydroxyl (OH) ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5–1% of linkers A–B and E–F, and 0.13–0.5% of linkers C–D could be joined by T4 DNA ligases. About 0.25–0.77% of linkers A–B and E–F, and 0.06–0.39% of linkers C–D could be joined by E. coli DNA ligases. A 1-base deletion (-G) and a 5-base deletion (-GGAGC) could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025–0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5′-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i) about 0.025–0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3′-OH ends of other linkers; and (ii) the linkers could delete one or more nucleotide(s) at their 5′-ends and thereby generated some 5′-phosphate ends, and then these 5′-phosphate ends could be joined to the 3′-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5′-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK.