Cargando…

On decoding and rewriting genomes: a psychoanalytical reading of a scientific revolution

In various documents the view emerges that contemporary biotechnosciences are currently experiencing a scientific revolution: a massive increase of pace, scale and scope. A significant part of the research endeavours involved in this scientific upheaval is devoted to understanding and, if possible,...

Descripción completa

Detalles Bibliográficos
Autor principal: Zwart, Hub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384779/
https://www.ncbi.nlm.nih.gov/pubmed/21968838
http://dx.doi.org/10.1007/s11019-011-9351-y
Descripción
Sumario:In various documents the view emerges that contemporary biotechnosciences are currently experiencing a scientific revolution: a massive increase of pace, scale and scope. A significant part of the research endeavours involved in this scientific upheaval is devoted to understanding and, if possible, ameliorating humankind: from our genomes up to our bodies and brains. New developments in contemporary technosciences, such as synthetic biology and other genomics and “post-genomics” fields, tend to blur the distinctions between prevention, therapy and enhancement. An important dimension of this development is “biomimesis”: i.e. the tendency of novel technologies and materials to mimic or plagiarize nature on a molecular and microscopic level in order to optimise prospects for the embedding of technological artefacts in natural systems such as human bodies and brains. In this paper, these developments are read and assessed from a psychoanalytical perspective. Three key concepts from psychoanalysis are used to come to terms with what is happening in research laboratories today. After assessing the general profile of the current revolution in this manner, I will focus on a particular case study, a line of research that may serve as exemplification of the vicissitudes of contemporary technosciences, namely viral biomaterials. Viral life forms can be genetically modified (their genomes can be rewritten) in such a manner that they may be inserted in human bodies in order to produce substances at specific sites such as hormones (testosterone), neurotransmitters (dopamine), enzymes (insulin) or bone and muscle tissue. Notably, certain target groups such as top athletes, soldiers or patients suffering from degenerative diseases may become the pioneers serving as research subjects for novel applications. The same technologies can be used for various purposes ranging from therapy up to prevention and enhancement.