Cargando…
In Vivo Chemical Screening for Modulators of Hematopoiesis and Hematological Diseases
In vivo chemical screening is a broadly applicable approach not only for dissecting genetic pathways governing hematopoiesis and hematological diseases, but also for finding critical components in those pathways that may be pharmacologically modulated. Both high-throughput chemical screening and fac...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385708/ https://www.ncbi.nlm.nih.gov/pubmed/22778745 http://dx.doi.org/10.1155/2012/851674 |
Sumario: | In vivo chemical screening is a broadly applicable approach not only for dissecting genetic pathways governing hematopoiesis and hematological diseases, but also for finding critical components in those pathways that may be pharmacologically modulated. Both high-throughput chemical screening and facile detection of blood-cell-related phenotypes are feasible in embryonic/larval zebrafish. Two recent studies utilizing phenotypic chemical screens in zebrafish have identified several compounds that promote hematopoietic stem cell formation and reverse the hematopoietic phenotypes of a leukemia oncogene, respectively. These studies illustrate efficient drug discovery processes in zebrafish and reveal novel biological roles of prostaglandin E2 in hematopoietic and leukemia stem cells. Furthermore, the compounds discovered in zebrafish screens have become promising therapeutic candidates against leukemia and included in a clinical trial for enhancing hematopoietic stem cells during hematopoietic cell transplantation. |
---|