Cargando…

Inferring pandemic growth rates from sequence data

Using sequence data to infer population dynamics is playing an increasing role in the analysis of outbreaks. The most common methods in use, based on coalescent inference, have been widely used but not extensively tested against simulated epidemics. Here, we use simulated data to test the ability of...

Descripción completa

Detalles Bibliográficos
Autores principales: de Silva, Eric, Ferguson, Neil M., Fraser, Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385754/
https://www.ncbi.nlm.nih.gov/pubmed/22337627
http://dx.doi.org/10.1098/rsif.2011.0850
_version_ 1782236918589685760
author de Silva, Eric
Ferguson, Neil M.
Fraser, Christophe
author_facet de Silva, Eric
Ferguson, Neil M.
Fraser, Christophe
author_sort de Silva, Eric
collection PubMed
description Using sequence data to infer population dynamics is playing an increasing role in the analysis of outbreaks. The most common methods in use, based on coalescent inference, have been widely used but not extensively tested against simulated epidemics. Here, we use simulated data to test the ability of both parametric and non-parametric methods for inference of effective population size (coded in the popular BEAST package) to reconstruct epidemic dynamics. We consider a range of simulations centred on scenarios considered plausible for pandemic influenza, but our conclusions are generic for any exponentially growing epidemic. We highlight systematic biases in non-parametric effective population size estimation. The most prominent such bias leads to the false inference of slowing of epidemic spread in the recent past even when the real epidemic is growing exponentially. We suggest some sampling strategies that could reduce (but not eliminate) some of the biases. Parametric methods can correct for these biases if the infected population size is large. We also explore how some poor sampling strategies (e.g. that over-represent epidemiologically linked clusters of cases) could dramatically exacerbate bias in an uncontrolled manner. Finally, we present a simple diagnostic indicator, based on coalescent density and which can easily be applied to reconstructed phylogenies, that identifies time-periods for which effective population size estimates are less likely to be biased. We illustrate this with an application to the 2009 H1N1 pandemic.
format Online
Article
Text
id pubmed-3385754
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-33857542012-06-29 Inferring pandemic growth rates from sequence data de Silva, Eric Ferguson, Neil M. Fraser, Christophe J R Soc Interface Research Articles Using sequence data to infer population dynamics is playing an increasing role in the analysis of outbreaks. The most common methods in use, based on coalescent inference, have been widely used but not extensively tested against simulated epidemics. Here, we use simulated data to test the ability of both parametric and non-parametric methods for inference of effective population size (coded in the popular BEAST package) to reconstruct epidemic dynamics. We consider a range of simulations centred on scenarios considered plausible for pandemic influenza, but our conclusions are generic for any exponentially growing epidemic. We highlight systematic biases in non-parametric effective population size estimation. The most prominent such bias leads to the false inference of slowing of epidemic spread in the recent past even when the real epidemic is growing exponentially. We suggest some sampling strategies that could reduce (but not eliminate) some of the biases. Parametric methods can correct for these biases if the infected population size is large. We also explore how some poor sampling strategies (e.g. that over-represent epidemiologically linked clusters of cases) could dramatically exacerbate bias in an uncontrolled manner. Finally, we present a simple diagnostic indicator, based on coalescent density and which can easily be applied to reconstructed phylogenies, that identifies time-periods for which effective population size estimates are less likely to be biased. We illustrate this with an application to the 2009 H1N1 pandemic. The Royal Society 2012-08-07 2012-02-15 /pmc/articles/PMC3385754/ /pubmed/22337627 http://dx.doi.org/10.1098/rsif.2011.0850 Text en This journal is © 2012 The Royal Society http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
de Silva, Eric
Ferguson, Neil M.
Fraser, Christophe
Inferring pandemic growth rates from sequence data
title Inferring pandemic growth rates from sequence data
title_full Inferring pandemic growth rates from sequence data
title_fullStr Inferring pandemic growth rates from sequence data
title_full_unstemmed Inferring pandemic growth rates from sequence data
title_short Inferring pandemic growth rates from sequence data
title_sort inferring pandemic growth rates from sequence data
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385754/
https://www.ncbi.nlm.nih.gov/pubmed/22337627
http://dx.doi.org/10.1098/rsif.2011.0850
work_keys_str_mv AT desilvaeric inferringpandemicgrowthratesfromsequencedata
AT fergusonneilm inferringpandemicgrowthratesfromsequencedata
AT fraserchristophe inferringpandemicgrowthratesfromsequencedata