Cargando…
Yeast and the AIDS Virus: The Odd Couple
Despite being simple eukaryotic organisms, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have been widely used as a model to study human pathologies and the replication of human, animal, and plant viruses, as well as the function of individual viral proteins. The complete genome...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385842/ https://www.ncbi.nlm.nih.gov/pubmed/22778552 http://dx.doi.org/10.1155/2012/549020 |
_version_ | 1782236922202030080 |
---|---|
author | Andréola, Marie-Line Litvak, Simon |
author_facet | Andréola, Marie-Line Litvak, Simon |
author_sort | Andréola, Marie-Line |
collection | PubMed |
description | Despite being simple eukaryotic organisms, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have been widely used as a model to study human pathologies and the replication of human, animal, and plant viruses, as well as the function of individual viral proteins. The complete genome of S. cerevisiae was the first of eukaryotic origin to be sequenced and contains about 6,000 genes. More than 75% of the genes have an assigned function, while more than 40% share conserved sequences with known or predicted human genes. This strong homology has allowed the function of human orthologs to be unveiled starting from the data obtained in yeast. RNA plant viruses were the first to be studied in yeast. In this paper, we focus on the use of the yeast model to study the function of the proteins of human immunodeficiency virus type 1 (HIV-1) and the search for its cellular partners. This human retrovirus is the cause of AIDS. The WHO estimates that there are 33.4 million people worldwide living with HIV/AIDS, with 2.7 million new HIV infections per year and 2.0 million annual deaths due to AIDS. Current therapy is able to control the disease but there is no permanent cure or a vaccine. By using yeast, it is possible to dissect the function of some HIV-1 proteins and discover new cellular factors common to this simple cell and humans that may become potential therapeutic targets, leading to a long-lasting treatment for AIDS. |
format | Online Article Text |
id | pubmed-3385842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33858422012-07-09 Yeast and the AIDS Virus: The Odd Couple Andréola, Marie-Line Litvak, Simon J Biomed Biotechnol Review Article Despite being simple eukaryotic organisms, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have been widely used as a model to study human pathologies and the replication of human, animal, and plant viruses, as well as the function of individual viral proteins. The complete genome of S. cerevisiae was the first of eukaryotic origin to be sequenced and contains about 6,000 genes. More than 75% of the genes have an assigned function, while more than 40% share conserved sequences with known or predicted human genes. This strong homology has allowed the function of human orthologs to be unveiled starting from the data obtained in yeast. RNA plant viruses were the first to be studied in yeast. In this paper, we focus on the use of the yeast model to study the function of the proteins of human immunodeficiency virus type 1 (HIV-1) and the search for its cellular partners. This human retrovirus is the cause of AIDS. The WHO estimates that there are 33.4 million people worldwide living with HIV/AIDS, with 2.7 million new HIV infections per year and 2.0 million annual deaths due to AIDS. Current therapy is able to control the disease but there is no permanent cure or a vaccine. By using yeast, it is possible to dissect the function of some HIV-1 proteins and discover new cellular factors common to this simple cell and humans that may become potential therapeutic targets, leading to a long-lasting treatment for AIDS. Hindawi Publishing Corporation 2012 2012-06-17 /pmc/articles/PMC3385842/ /pubmed/22778552 http://dx.doi.org/10.1155/2012/549020 Text en Copyright © 2012 M.-L. Andréola and S. Litvak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Andréola, Marie-Line Litvak, Simon Yeast and the AIDS Virus: The Odd Couple |
title | Yeast and the AIDS Virus: The Odd Couple |
title_full | Yeast and the AIDS Virus: The Odd Couple |
title_fullStr | Yeast and the AIDS Virus: The Odd Couple |
title_full_unstemmed | Yeast and the AIDS Virus: The Odd Couple |
title_short | Yeast and the AIDS Virus: The Odd Couple |
title_sort | yeast and the aids virus: the odd couple |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385842/ https://www.ncbi.nlm.nih.gov/pubmed/22778552 http://dx.doi.org/10.1155/2012/549020 |
work_keys_str_mv | AT andreolamarieline yeastandtheaidsvirustheoddcouple AT litvaksimon yeastandtheaidsvirustheoddcouple |