Cargando…
The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner
DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP co...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386226/ https://www.ncbi.nlm.nih.gov/pubmed/22761595 http://dx.doi.org/10.1371/journal.pgen.1002801 |
_version_ | 1782236951636606976 |
---|---|
author | Lin, Su-Jiun Wardlaw, Christopher P. Morishita, Takashi Miyabe, Izumi Chahwan, Charly Caspari, Thomas Schmidt, Ulrike Carr, Antony M. Garcia, Valerie |
author_facet | Lin, Su-Jiun Wardlaw, Christopher P. Morishita, Takashi Miyabe, Izumi Chahwan, Charly Caspari, Thomas Schmidt, Ulrike Carr, Antony M. Garcia, Valerie |
author_sort | Lin, Su-Jiun |
collection | PubMed |
description | DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show that Schizosaccharomyces pombe Rad4(TopBP1) AAD–defective strains are DNA damage sensitive during G1/S-phase, but not during G2. Using lacO-LacI tethering, we developed a DNA damage–independent assay for checkpoint activation that is Rad4(TopBP1) AAD–dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb2(53BP1). Consistent with a model where Rad4(TopBP1) AAD–dependent checkpoint activation is ssDNA/RPA–independent and functions to amplify otherwise weak checkpoint signals, we demonstrate that the Rad4(TopBP1) AAD is important for Chk1 phosphorylation when resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4(TopBP1) AAD acts additively with a Rad9 AAD in G1/S phase but not G2. We propose that AAD–dependent Rad3(ATR) checkpoint amplification is particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein–chromatin interactions. |
format | Online Article Text |
id | pubmed-3386226 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33862262012-07-03 The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner Lin, Su-Jiun Wardlaw, Christopher P. Morishita, Takashi Miyabe, Izumi Chahwan, Charly Caspari, Thomas Schmidt, Ulrike Carr, Antony M. Garcia, Valerie PLoS Genet Research Article DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show that Schizosaccharomyces pombe Rad4(TopBP1) AAD–defective strains are DNA damage sensitive during G1/S-phase, but not during G2. Using lacO-LacI tethering, we developed a DNA damage–independent assay for checkpoint activation that is Rad4(TopBP1) AAD–dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb2(53BP1). Consistent with a model where Rad4(TopBP1) AAD–dependent checkpoint activation is ssDNA/RPA–independent and functions to amplify otherwise weak checkpoint signals, we demonstrate that the Rad4(TopBP1) AAD is important for Chk1 phosphorylation when resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4(TopBP1) AAD acts additively with a Rad9 AAD in G1/S phase but not G2. We propose that AAD–dependent Rad3(ATR) checkpoint amplification is particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein–chromatin interactions. Public Library of Science 2012-06-28 /pmc/articles/PMC3386226/ /pubmed/22761595 http://dx.doi.org/10.1371/journal.pgen.1002801 Text en Lin et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lin, Su-Jiun Wardlaw, Christopher P. Morishita, Takashi Miyabe, Izumi Chahwan, Charly Caspari, Thomas Schmidt, Ulrike Carr, Antony M. Garcia, Valerie The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner |
title | The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner |
title_full | The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner |
title_fullStr | The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner |
title_full_unstemmed | The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner |
title_short | The Rad4(TopBP1) ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner |
title_sort | rad4(topbp1) atr-activation domain functions in g1/s phase in a chromatin-dependent manner |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386226/ https://www.ncbi.nlm.nih.gov/pubmed/22761595 http://dx.doi.org/10.1371/journal.pgen.1002801 |
work_keys_str_mv | AT linsujiun therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT wardlawchristopherp therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT morishitatakashi therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT miyabeizumi therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT chahwancharly therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT casparithomas therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT schmidtulrike therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT carrantonym therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT garciavalerie therad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT linsujiun rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT wardlawchristopherp rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT morishitatakashi rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT miyabeizumi rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT chahwancharly rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT casparithomas rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT schmidtulrike rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT carrantonym rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner AT garciavalerie rad4topbp1atractivationdomainfunctionsing1sphaseinachromatindependentmanner |