Cargando…

Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim...

Descripción completa

Detalles Bibliográficos
Autores principales: van de Giesen, Nick, Steele-Dunne, Susan C., Jansen, Jop, Hoes, Olivier, Hausner, Mark B., Tyler, Scott, Selker, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386695/
https://www.ncbi.nlm.nih.gov/pubmed/22778596
http://dx.doi.org/10.3390/s120505471
Descripción
Sumario:Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field.