Cargando…
Using LS-SVM Based Motion Recognition for Smartphone Indoor Wireless Positioning
The paper presents an indoor navigation solution by combining physical motion recognition with wireless positioning. Twenty-seven simple features are extracted from the built-in accelerometers and magnetometers in a smartphone. Eight common motion states used during indoor navigation are detected by...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386734/ https://www.ncbi.nlm.nih.gov/pubmed/22778635 http://dx.doi.org/10.3390/s120506155 |
Sumario: | The paper presents an indoor navigation solution by combining physical motion recognition with wireless positioning. Twenty-seven simple features are extracted from the built-in accelerometers and magnetometers in a smartphone. Eight common motion states used during indoor navigation are detected by a Least Square-Support Vector Machines (LS-SVM) classification algorithm, e.g., static, standing with hand swinging, normal walking while holding the phone in hand, normal walking with hand swinging, fast walking, U-turning, going up stairs, and going down stairs. The results indicate that the motion states are recognized with an accuracy of up to 95.53% for the test cases employed in this study. A motion recognition assisted wireless positioning approach is applied to determine the position of a mobile user. Field tests show a 1.22 m mean error in “Static Tests” and a 3.53 m in “Stop-Go Tests”. |
---|