Cargando…
Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1
HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1 transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1) is critical for this function of Tat. PP1 binds to a Tat sequence, Q(35)VCF(38), which resembles the PP1-bindin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387161/ https://www.ncbi.nlm.nih.gov/pubmed/22768081 http://dx.doi.org/10.1371/journal.pone.0039481 |
_version_ | 1782237064349089792 |
---|---|
author | Ammosova, Tatiana Platonov, Maxim Yedavalli, Venkat R. K. Obukhov, Yuri Gordeuk, Victor R. Jeang, Kuan-Teh Kovalskyy, Dmytro Nekhai, Sergei |
author_facet | Ammosova, Tatiana Platonov, Maxim Yedavalli, Venkat R. K. Obukhov, Yuri Gordeuk, Victor R. Jeang, Kuan-Teh Kovalskyy, Dmytro Nekhai, Sergei |
author_sort | Ammosova, Tatiana |
collection | PubMed |
description | HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1 transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1) is critical for this function of Tat. PP1 binds to a Tat sequence, Q(35)VCF(38), which resembles the PP1-binding “RVxF” motif present on PP1-binding regulatory subunits. We showed that expression of PP1 binding peptide, a central domain of Nuclear Inhibitor of PP1, disrupted the interaction of HIV-1 Tat with PP1 and inhibited HIV-1 transcription and replication. Here, we report small molecule compounds that target the “RVxF”-binding cavity of PP1 to disrupt the interaction of PP1 with Tat and inhibit HIV-1 replication. Using the crystal structure of PP1, we virtually screened 300,000 compounds and identified 262 small molecules that were predicted to bind the “RVxF”-accommodating cavity of PP1. These compounds were then assayed for inhibition of HIV-1 transcription in CEM T cells. One of the compounds, 1H4, inhibited HIV-1 transcription and replication at non-cytotoxic concentrations. 1H4 prevented PP1-mediated dephosphorylation of a substrate peptide containing an RVxF sequence in vitro. 1H4 also disrupted the association of PP1 with Tat in cultured cells without having an effect on the interaction of PP1 with the cellular regulators, NIPP1 and PNUTS, or on the cellular proteome. Finally, 1H4 prevented the translocation of PP1 to the nucleus. Taken together, our study shows that HIV- inhibition can be achieved through using small molecules to target a non-catalytic site of PP1. This proof-of-principle study can serve as a starting point for the development of novel antiviral drugs that target the interface of HIV-1 viral proteins with their host partners. |
format | Online Article Text |
id | pubmed-3387161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33871612012-07-05 Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1 Ammosova, Tatiana Platonov, Maxim Yedavalli, Venkat R. K. Obukhov, Yuri Gordeuk, Victor R. Jeang, Kuan-Teh Kovalskyy, Dmytro Nekhai, Sergei PLoS One Research Article HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1 transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1) is critical for this function of Tat. PP1 binds to a Tat sequence, Q(35)VCF(38), which resembles the PP1-binding “RVxF” motif present on PP1-binding regulatory subunits. We showed that expression of PP1 binding peptide, a central domain of Nuclear Inhibitor of PP1, disrupted the interaction of HIV-1 Tat with PP1 and inhibited HIV-1 transcription and replication. Here, we report small molecule compounds that target the “RVxF”-binding cavity of PP1 to disrupt the interaction of PP1 with Tat and inhibit HIV-1 replication. Using the crystal structure of PP1, we virtually screened 300,000 compounds and identified 262 small molecules that were predicted to bind the “RVxF”-accommodating cavity of PP1. These compounds were then assayed for inhibition of HIV-1 transcription in CEM T cells. One of the compounds, 1H4, inhibited HIV-1 transcription and replication at non-cytotoxic concentrations. 1H4 prevented PP1-mediated dephosphorylation of a substrate peptide containing an RVxF sequence in vitro. 1H4 also disrupted the association of PP1 with Tat in cultured cells without having an effect on the interaction of PP1 with the cellular regulators, NIPP1 and PNUTS, or on the cellular proteome. Finally, 1H4 prevented the translocation of PP1 to the nucleus. Taken together, our study shows that HIV- inhibition can be achieved through using small molecules to target a non-catalytic site of PP1. This proof-of-principle study can serve as a starting point for the development of novel antiviral drugs that target the interface of HIV-1 viral proteins with their host partners. Public Library of Science 2012-06-29 /pmc/articles/PMC3387161/ /pubmed/22768081 http://dx.doi.org/10.1371/journal.pone.0039481 Text en Ammosova et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ammosova, Tatiana Platonov, Maxim Yedavalli, Venkat R. K. Obukhov, Yuri Gordeuk, Victor R. Jeang, Kuan-Teh Kovalskyy, Dmytro Nekhai, Sergei Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1 |
title | Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1 |
title_full | Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1 |
title_fullStr | Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1 |
title_full_unstemmed | Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1 |
title_short | Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1 |
title_sort | small molecules targeted to a non-catalytic “rvxf” binding site of protein phosphatase-1 inhibit hiv-1 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387161/ https://www.ncbi.nlm.nih.gov/pubmed/22768081 http://dx.doi.org/10.1371/journal.pone.0039481 |
work_keys_str_mv | AT ammosovatatiana smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 AT platonovmaxim smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 AT yedavallivenkatrk smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 AT obukhovyuri smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 AT gordeukvictorr smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 AT jeangkuanteh smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 AT kovalskyydmytro smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 AT nekhaisergei smallmoleculestargetedtoanoncatalyticrvxfbindingsiteofproteinphosphatase1inhibithiv1 |