Cargando…
Inferring task-related networks using independent component analysis in magnetoencephalography
A novel framework for analysing task-positive data in magnetoencephalography (MEG) is presented that can identify task-related networks. Techniques that combine beamforming, the Hilbert transform and temporal independent component analysis (ICA) have recently been applied to resting-state MEG data a...
Autores principales: | Luckhoo, H., Hale, J.R., Stokes, M.G., Nobre, A.C., Morris, P.G., Brookes, M.J., Woolrich, M.W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387383/ https://www.ncbi.nlm.nih.gov/pubmed/22569064 http://dx.doi.org/10.1016/j.neuroimage.2012.04.046 |
Ejemplares similares
-
The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography
por: Astle, Duncan E., et al.
Publicado: (2015) -
Magnetoencephalography
por: Proudfoot, Malcolm, et al.
Publicado: (2014) -
Multi-session statistics on beamformed MEG data()
por: Luckhoo, Henry T., et al.
Publicado: (2014) -
Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage
por: Brookes, M.J., et al.
Publicado: (2012) -
A symmetric multivariate leakage correction for MEG connectomes
por: Colclough, G.L., et al.
Publicado: (2015)