Cargando…
Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome
INTRODUCTION: End-expiratory lung volume (EELV) is decreased in acute respiratory distress syndrome (ARDS), and bedside EELV measurement may help to set positive end-expiratory pressure (PEEP). Nitrogen washout/washin for EELV measurement is available at the bedside, but assessments of accuracy and...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388680/ https://www.ncbi.nlm.nih.gov/pubmed/22166727 http://dx.doi.org/10.1186/cc10587 |
_version_ | 1782237225513123840 |
---|---|
author | Dellamonica, Jean Lerolle, Nicolas Sargentini, Cyril Beduneau, Gaetan Di Marco, Fabiano Mercat, Alain Richard, Jean-Christophe M Diehl, Jean-Luc Mancebo, Jordi Rouby, Jean-Jacques Lu, Qin Bernardin, Gilles Brochard, Laurent |
author_facet | Dellamonica, Jean Lerolle, Nicolas Sargentini, Cyril Beduneau, Gaetan Di Marco, Fabiano Mercat, Alain Richard, Jean-Christophe M Diehl, Jean-Luc Mancebo, Jordi Rouby, Jean-Jacques Lu, Qin Bernardin, Gilles Brochard, Laurent |
author_sort | Dellamonica, Jean |
collection | PubMed |
description | INTRODUCTION: End-expiratory lung volume (EELV) is decreased in acute respiratory distress syndrome (ARDS), and bedside EELV measurement may help to set positive end-expiratory pressure (PEEP). Nitrogen washout/washin for EELV measurement is available at the bedside, but assessments of accuracy and precision in real-life conditions are scant. Our purpose was to (a) assess EELV measurement precision in ARDS patients at two PEEP levels (three pairs of measurements), and (b) compare the changes (Δ) induced by PEEP for total EELV with the PEEP-induced changes in lung volume above functional residual capacity measured with passive spirometry (ΔPEEP-volume). The minimal predicted increase in lung volume was calculated from compliance at low PEEP and ΔPEEP to ensure the validity of lung-volume changes. METHODS: Thirty-four patients with ARDS were prospectively included in five university-hospital intensive care units. ΔEELV and ΔPEEP volumes were compared between 6 and 15 cm H(2)O of PEEP. RESULTS: After exclusion of three patients, variability of the nitrogen technique was less than 4%, and the largest difference between measurements was 81 ± 64 ml. ΔEELV and ΔPEEP-volume were only weakly correlated (r(2 )= 0.47); 95% confidence interval limits, -414 to 608 ml). In four patients with the highest PEEP (≥ 16 cm H(2)O), ΔEELV was lower than the minimal predicted increase in lung volume, suggesting flawed measurements, possibly due to leaks. Excluding those from the analysis markedly strengthened the correlation between ΔEELV and ΔPEEP volume (r(2 )= 0.80). CONCLUSIONS: In most patients, the EELV technique has good reproducibility and accuracy, even at high PEEP. At high pressures, its accuracy may be limited in case of leaks. The minimal predicted increase in lung volume may help to check for accuracy. |
format | Online Article Text |
id | pubmed-3388680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33886802012-07-04 Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome Dellamonica, Jean Lerolle, Nicolas Sargentini, Cyril Beduneau, Gaetan Di Marco, Fabiano Mercat, Alain Richard, Jean-Christophe M Diehl, Jean-Luc Mancebo, Jordi Rouby, Jean-Jacques Lu, Qin Bernardin, Gilles Brochard, Laurent Crit Care Research INTRODUCTION: End-expiratory lung volume (EELV) is decreased in acute respiratory distress syndrome (ARDS), and bedside EELV measurement may help to set positive end-expiratory pressure (PEEP). Nitrogen washout/washin for EELV measurement is available at the bedside, but assessments of accuracy and precision in real-life conditions are scant. Our purpose was to (a) assess EELV measurement precision in ARDS patients at two PEEP levels (three pairs of measurements), and (b) compare the changes (Δ) induced by PEEP for total EELV with the PEEP-induced changes in lung volume above functional residual capacity measured with passive spirometry (ΔPEEP-volume). The minimal predicted increase in lung volume was calculated from compliance at low PEEP and ΔPEEP to ensure the validity of lung-volume changes. METHODS: Thirty-four patients with ARDS were prospectively included in five university-hospital intensive care units. ΔEELV and ΔPEEP volumes were compared between 6 and 15 cm H(2)O of PEEP. RESULTS: After exclusion of three patients, variability of the nitrogen technique was less than 4%, and the largest difference between measurements was 81 ± 64 ml. ΔEELV and ΔPEEP-volume were only weakly correlated (r(2 )= 0.47); 95% confidence interval limits, -414 to 608 ml). In four patients with the highest PEEP (≥ 16 cm H(2)O), ΔEELV was lower than the minimal predicted increase in lung volume, suggesting flawed measurements, possibly due to leaks. Excluding those from the analysis markedly strengthened the correlation between ΔEELV and ΔPEEP volume (r(2 )= 0.80). CONCLUSIONS: In most patients, the EELV technique has good reproducibility and accuracy, even at high PEEP. At high pressures, its accuracy may be limited in case of leaks. The minimal predicted increase in lung volume may help to check for accuracy. BioMed Central 2011 2011-12-07 /pmc/articles/PMC3388680/ /pubmed/22166727 http://dx.doi.org/10.1186/cc10587 Text en Copyright ©2011 Dellamonica et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Dellamonica, Jean Lerolle, Nicolas Sargentini, Cyril Beduneau, Gaetan Di Marco, Fabiano Mercat, Alain Richard, Jean-Christophe M Diehl, Jean-Luc Mancebo, Jordi Rouby, Jean-Jacques Lu, Qin Bernardin, Gilles Brochard, Laurent Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome |
title | Accuracy and precision of end-expiratory lung-volume measurements by automated
nitrogen washout/washin technique in patients with acute respiratory distress
syndrome |
title_full | Accuracy and precision of end-expiratory lung-volume measurements by automated
nitrogen washout/washin technique in patients with acute respiratory distress
syndrome |
title_fullStr | Accuracy and precision of end-expiratory lung-volume measurements by automated
nitrogen washout/washin technique in patients with acute respiratory distress
syndrome |
title_full_unstemmed | Accuracy and precision of end-expiratory lung-volume measurements by automated
nitrogen washout/washin technique in patients with acute respiratory distress
syndrome |
title_short | Accuracy and precision of end-expiratory lung-volume measurements by automated
nitrogen washout/washin technique in patients with acute respiratory distress
syndrome |
title_sort | accuracy and precision of end-expiratory lung-volume measurements by automated
nitrogen washout/washin technique in patients with acute respiratory distress
syndrome |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388680/ https://www.ncbi.nlm.nih.gov/pubmed/22166727 http://dx.doi.org/10.1186/cc10587 |
work_keys_str_mv | AT dellamonicajean accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT lerollenicolas accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT sargentinicyril accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT beduneaugaetan accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT dimarcofabiano accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT mercatalain accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT richardjeanchristophem accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT diehljeanluc accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT mancebojordi accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT roubyjeanjacques accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT luqin accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT bernardingilles accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome AT brochardlaurent accuracyandprecisionofendexpiratorylungvolumemeasurementsbyautomatednitrogenwashoutwashintechniqueinpatientswithacuterespiratorydistresssyndrome |