Cargando…

Relationship between leaf stages and epistasis for resistance to Stagonospora nodorum in durum wheat

Ten varieties and eight generations (2F1, 2F2, 2B1 and 2B2) of durum wheat derived from two crosses were evaluated for resistance to natural infection by Stagonospora nodorum blotch (SNB) at the 2–3 and 6–7 leaf stages at two sites over two years. There were significant differences in the incidence...

Descripción completa

Detalles Bibliográficos
Autores principales: Bnejdi, Fethi, Saadoun, Mourad, Naouari, Mouna, El Gazzah, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Genética 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389532/
https://www.ncbi.nlm.nih.gov/pubmed/22888293
http://dx.doi.org/10.1590/S1415-47572012005000033
Descripción
Sumario:Ten varieties and eight generations (2F1, 2F2, 2B1 and 2B2) of durum wheat derived from two crosses were evaluated for resistance to natural infection by Stagonospora nodorum blotch (SNB) at the 2–3 and 6–7 leaf stages at two sites over two years. There were significant differences in the incidence of SNB between leaf stages in most of the wheat varieties, with resistance being most evident at the 6–7 leaf stage. Separate analyses of the mean values for each generation showed that the genetic mechanism of defense against the pathogen depended upon the leaf stage. At the 2–3 leaf stage, only additive and dominance effects were implicated in the control of SNB for the two crosses at the two sites and for the two replications. For the 6–7 leaf stage, inheritance was more complicated and an epistatic effect was involved. Narrow-sense heritability values (range: 0.63–0.67) were consistent between crosses and leaf stages. These findings indicate a lack of resistance to SNB at the 2–3 leaf stage whereas resistance was observed at the 6–7 leaf stage and involved the genetic mechanisms of plant defense such as epistasis.