Cargando…

Physiochemical Characterization of Briquettes Made from Different Feedstocks

Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstock...

Descripción completa

Detalles Bibliográficos
Autores principales: Karunanithy, C., Wang, Y., Muthukumarappan, K., Pugalendhi, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390033/
https://www.ncbi.nlm.nih.gov/pubmed/22792471
http://dx.doi.org/10.1155/2012/165202
Descripción
Sumario:Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m(3) which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability.