Cargando…
Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters
Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal bio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390398/ https://www.ncbi.nlm.nih.gov/pubmed/22792053 http://dx.doi.org/10.1371/journal.pcbi.1002575 |
_version_ | 1782237444081451008 |
---|---|
author | Adadi, Roi Volkmer, Benjamin Milo, Ron Heinemann, Matthias Shlomi, Tomer |
author_facet | Adadi, Roi Volkmer, Benjamin Milo, Ron Heinemann, Matthias Shlomi, Tomer |
author_sort | Adadi, Roi |
collection | PubMed |
description | Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate. |
format | Online Article Text |
id | pubmed-3390398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33903982012-07-12 Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters Adadi, Roi Volkmer, Benjamin Milo, Ron Heinemann, Matthias Shlomi, Tomer PLoS Comput Biol Research Article Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate. Public Library of Science 2012-07-05 /pmc/articles/PMC3390398/ /pubmed/22792053 http://dx.doi.org/10.1371/journal.pcbi.1002575 Text en Adadi et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Adadi, Roi Volkmer, Benjamin Milo, Ron Heinemann, Matthias Shlomi, Tomer Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters |
title | Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters |
title_full | Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters |
title_fullStr | Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters |
title_full_unstemmed | Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters |
title_short | Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters |
title_sort | prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390398/ https://www.ncbi.nlm.nih.gov/pubmed/22792053 http://dx.doi.org/10.1371/journal.pcbi.1002575 |
work_keys_str_mv | AT adadiroi predictionofmicrobialgrowthrateversusbiomassyieldbyametabolicnetworkwithkineticparameters AT volkmerbenjamin predictionofmicrobialgrowthrateversusbiomassyieldbyametabolicnetworkwithkineticparameters AT miloron predictionofmicrobialgrowthrateversusbiomassyieldbyametabolicnetworkwithkineticparameters AT heinemannmatthias predictionofmicrobialgrowthrateversusbiomassyieldbyametabolicnetworkwithkineticparameters AT shlomitomer predictionofmicrobialgrowthrateversusbiomassyieldbyametabolicnetworkwithkineticparameters |