Cargando…

Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO(2)

BACKGROUND: The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO(2)-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO(2) (SpEDS), which is an advanced version of solu...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ai-Zheng, Wang, Guang-Ya, Wang, Shi-Bin, Li, Li, Liu, Yuan-Gang, Zhao, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391004/
https://www.ncbi.nlm.nih.gov/pubmed/22787397
http://dx.doi.org/10.2147/IJN.S32662
Descripción
Sumario:BACKGROUND: The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO(2)-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO(2) (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO(2) (SEDS). METHODS: Methotrexate nanoparticles were successfully microencapsulated into poly (L-lactide)-poly(ethylene glycol)-poly(L-lactide) (PLLA-PEG-PLLA) by SpEDS. Methotrexate nanoparticles were first prepared by SEDS, then suspended in PLLA-PEG-PLLA solution, and finally microencapsulated into PLLA-PEG-PLLA via SpEDS, where an “injector” was utilized in the suspension delivery system. RESULTS: After microencapsulation, the composite methotrexate (MTX)-PLLA-PEG-PLLA microspheres obtained had a mean particle size of 545 nm, drug loading of 13.7%, and an encapsulation efficiency of 39.2%. After an initial burst release, with around 65% of the total methotrexate being released in the first 3 hours, the MTX-PLLA-PEG-PLLA microspheres released methotrexate in a sustained manner, with 85% of the total methotrexate dose released within 23 hours and nearly 100% within 144 hours. CONCLUSION: Compared with a parallel study of the coprecipitation process, microencapsulation using SpEDS offered greater potential to manufacture drug-loaded polymer microspheres for a drug delivery system.