Cargando…
Structural Discrimination of Networks by Using Distance, Degree and Eigenvalue-Based Measures
In chemistry and computational biology, structural graph descriptors have been proven essential for characterizing the structure of chemical and biological networks. It has also been demonstrated that they are useful to derive empirical models for structure-oriented drug design. However, from a more...
Autores principales: | Dehmer, Matthias, Grabner, Martin, Furtula, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391207/ https://www.ncbi.nlm.nih.gov/pubmed/22792157 http://dx.doi.org/10.1371/journal.pone.0038564 |
Ejemplares similares
-
Information Indices with High Discriminative Power for Graphs
por: Dehmer, Matthias, et al.
Publicado: (2012) -
Remotely Sensed Image Classification by Complex Network Eigenvalue and Connected Degree
por: Xu, Mengxi, et al.
Publicado: (2012) -
Remoteness and distance, distance (signless) Laplacian eigenvalues of a graph
por: Jia, Huicai, et al.
Publicado: (2018) -
Eigenvalues of the resistance-distance matrix of complete multipartite graphs
por: Das, Kinkar Chandra, et al.
Publicado: (2017) -
Interrelations of Graph Distance Measures Based on Topological Indices
por: Dehmer, Matthias, et al.
Publicado: (2014)