Cargando…
A Partitioning Based Adaptive Method for Robust Removal of Irrelevant Features from High-dimensional Biomedical Datasets
We propose a novel method called Partitioning based Adaptive Irrelevant Feature Eliminator (PAIFE) for dimensionality reduction in high-dimensional biomedical datasets. PAIFE evaluates feature-target relationships over not only a whole dataset, but also the partitioned subsets and is extremely effec...
Autores principales: | Liu1, Guodong, Kong, Lan, Gopalakrishnan, Vanathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392052/ https://www.ncbi.nlm.nih.gov/pubmed/22779051 |
Ejemplares similares
-
Application of an efficient Bayesian discretization method to biomedical data
por: Lustgarten, Jonathan L, et al.
Publicado: (2011) -
The importance of common and the irrelevance of rare species for partition the variation of community matrix: implications for sampling and conservation
por: Brasil, Leandro Schlemmer, et al.
Publicado: (2020) -
Is Task-Irrelevant Learning Really Task-Irrelevant?
por: Seitz, Aaron R., et al.
Publicado: (2008) -
GARS: Genetic Algorithm for the identification of a Robust Subset of features in high-dimensional datasets
por: Chiesa, Mattia, et al.
Publicado: (2020) -
Classification of high dimensional biomedical data based on feature selection using redundant removal
por: Zhang, Bingtao, et al.
Publicado: (2019)