Cargando…
Using Temporal Patterns in Medical Records to Discern Adverse Drug Events from Indications
Researchers estimate that electronic health record systems record roughly 2-million ambulatory adverse drug events and that patients suffer from adverse drug events in roughly 30% of hospital stays. Some have used structured databases of patient medical records and health insurance claims recently—g...
Autores principales: | Liu, Yi, LePendu, Paea, Iyer, Srinivasan, Shah, Nigam H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392062/ https://www.ncbi.nlm.nih.gov/pubmed/22779050 |
Ejemplares similares
-
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: (2013) -
Automated Detection of Systematic Off-label Drug Use in Free Text of Electronic Medical Records
por: Jung, Kenneth, et al.
Publicado: (2013) -
Analyzing Patterns of Drug Use in Clinical Notes for Patient Safety
por: LePendu, Paea, et al.
Publicado: (2012) -
Annotation analysis for testing drug safety signals using unstructured clinical notes
por: LePendu, Paea, et al.
Publicado: (2012)