Cargando…
MIP-1δ Activates NFATc1 and Enhances Osteoclastogenesis: Involvement of Both PLCγ2 and NFκB Signaling
Pathological bone resorption is a source of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, periodontitis, and cancer metastasis to bone. Evidence indicates that elevated levels of inflammatory mediators such as IL-1, IL-6, and TNF-α play a role in this process...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392212/ https://www.ncbi.nlm.nih.gov/pubmed/22792407 http://dx.doi.org/10.1371/journal.pone.0040799 |
Sumario: | Pathological bone resorption is a source of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, periodontitis, and cancer metastasis to bone. Evidence indicates that elevated levels of inflammatory mediators such as IL-1, IL-6, and TNF-α play a role in this process by promoting the formation of bone-resorbing osteoclasts. Additionally, current studies have identified inflammatory chemokines of the macrophage inflammatory protein (MIP) family as potential mediators of pathological bone resorption, where both MIP-1α and -3α have been shown to enhance osteoclast (OCL) development. In this study we provide evidence that MIP-1δ, whose expression is associated with renal cell carcinoma bone metastasis and rheumatoid arthritis, enhances OCL formation in vitro via a direct effect on OCL precursors. Consistent with this ability, exposure of OCL precursors to MIP-1δ resulted in the activation of PLCγ2 and NF-κB, two signaling pathways known to regulate OCL differentiation. Moreover, MIP-1δ induced expression and nuclear translocation of NFATc1, a master regulator of osteoclastogenesis, which was dependent on activation of both the PLCγ2 and NFκB signaling pathways. Lastly, consistent with in vitro studies, in vivo administration of MIP-1δ significantly increased OCL number and resorption area as determined using a murine calvarial bone resorption model. Taken together, these data highlight the potential of MIP-1δ as a mediator of pathological bone resorption and provide insight into the molecular mechanism through which MIP-1δ enhances osteoclastogenesis. |
---|