Cargando…
Magnolol Reduces Glutamate-Induced Neuronal Excitotoxicity and Protects against Permanent Focal Cerebral Ischemia Up to 4 Hours
Neuroprotective efficacy of magnolol, 5,5′-dially-2,2′-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered intraperit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392264/ https://www.ncbi.nlm.nih.gov/pubmed/22808077 http://dx.doi.org/10.1371/journal.pone.0039952 |
Sumario: | Neuroprotective efficacy of magnolol, 5,5′-dially-2,2′-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered intraperitoneally, at 1 hr pre-insult or 1–6 hrs post-insult. Brain infarction was measured upon sacrifice. Relative to controls, animals pre-treated with magnolol (50–200 mg/kg) had significant infarct volume reductions by 30.9–37.8% and improved neurobehavioral outcomes (P<0.05, respectively). Delayed treatment with magnolol (100 mg/kg) also protected against ischemic brain damage and improved neurobehavioral scores, even when administered up to 4 hrs post-insult (P<0.05, respectively). Additionally, magnolol (0.1 µM) effectively attenuated the rises of intracellular Ca(2+) levels, [Ca(2+)](i), in cultured neurons exposed to glutamate. Consequently, magnolol (0.1–1 µM) significantly attenuated glutamate-induced cytotoxicity and cell swelling (P<0.05). Thus, magnolol offers neuroprotection against permanent focal cerebral ischemia with a therapeutic window of 4 hrs. This neuroprotection may be, partly, mediated by its ability to limit the glutamate-induced excitotoxicity. |
---|