Cargando…
Strategies for enrichment and selection of stem cell-derived tissue precursors
Human embryonic stem cells have the capacity for self-renewal and pluripotency and thus are a primary candidate for tissue engineering and regenerative therapies. These cells also provide an opportunity to study the development of human tissues ex vivo. To date, numerous human embryonic stem cell li...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392764/ https://www.ncbi.nlm.nih.gov/pubmed/22575029 http://dx.doi.org/10.1186/scrt108 |
Sumario: | Human embryonic stem cells have the capacity for self-renewal and pluripotency and thus are a primary candidate for tissue engineering and regenerative therapies. These cells also provide an opportunity to study the development of human tissues ex vivo. To date, numerous human embryonic stem cell lines have been derived and characterized. In this review, we will detail the strategies used to direct tissue-specific differentiation of embryonic stem cells. We also will discuss how these strategies have produced new sources of tissue-specific progenitor cells. Finally, we will describe the next generation of methods being developed to identify and select stem cell-derived tissue precursors for experimental study and clinical use. |
---|