Cargando…

Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome

INTRODUCTION: Down syndrome (DS), a major cause of mental retardation, is caused by trisomy of some or all of human chromosome 21 and includes three basic karyotypes: trisomy 21, translocation, and mosaicism. The derivation of DS-specific induced pluripotent stem cells (iPSCs) provides us novel DS m...

Descripción completa

Detalles Bibliográficos
Autores principales: Mou, Xiaoning, Wu, Yuanbo, Cao, Henghua, Meng, Qingzhang, Wang, Qihui, Sun, Chengchao, Hu, Shengshou, Ma, Yue, Zhang, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392774/
https://www.ncbi.nlm.nih.gov/pubmed/22512921
http://dx.doi.org/10.1186/scrt105
Descripción
Sumario:INTRODUCTION: Down syndrome (DS), a major cause of mental retardation, is caused by trisomy of some or all of human chromosome 21 and includes three basic karyotypes: trisomy 21, translocation, and mosaicism. The derivation of DS-specific induced pluripotent stem cells (iPSCs) provides us novel DS models that can be used to determine the DS mechanism and to devise therapeutic approaches for DS patients. METHODS: In the present study, fibroblasts from patients with DS of various karyotypes were reprogrammed into iPSCs via the overexpression of four factors: OCT4, SOX2, KLF4, and c-MYC, by using lentiviral vectors. The abilities of the iPSC-DS in the self-renewal and pluripotency in vitro and in vivo were then examined. RESULTS: The iPSC-DS showed characteristics similar to those of human embryonic stem cells, particularly the morphology, surface marker (SSEA4, TRA-1-60, and TRA-1-81) expression, pluripotent-specific transcription-factor expression levels, and methylation status of the OCT4 promoter. The pluripotency of iPSC-DS was also tested in vitro and in vivo. Embryoid bodies were formed and showed the expression of differentiated markers for three germ layers. Furthermore, iPSC-DS formed classic teratomas when injected into nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. CONCLUSIONS: iPSCs were generated from patients with DS. The iPSCs derived from different types of DS may be used in DS modeling, patient-care optimization, drug discovery, and eventually, autologous cell-replacement therapies.