Cargando…
Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials
BACKGROUND: There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise distances between leaves. Such representations involve a specific labeling of the v...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393622/ https://www.ncbi.nlm.nih.gov/pubmed/22613173 http://dx.doi.org/10.1186/1748-7188-7-14 |
_version_ | 1782237737314680832 |
---|---|
author | Matsen , Frederick A Evans, Steven N |
author_facet | Matsen , Frederick A Evans, Steven N |
author_sort | Matsen , Frederick A |
collection | PubMed |
description | BACKGROUND: There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise distances between leaves. Such representations involve a specific labeling of the vertices or at least the leaves, and so it is natural to attempt to identify trees by some feature of the associated matrices that is invariant under relabeling. An obvious candidate is the spectrum of eigenvalues (or, equivalently, the characteristic polynomial). RESULTS: We show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to zero using numerical methods. For the adjacency and Laplacian matrices, we show that the a priori more informative immanantal polynomials have no greater power to distinguish between trees. CONCLUSION: Our results show that a generic large binary tree is highly unlikely to be identified uniquely by common spectral invariants. |
format | Online Article Text |
id | pubmed-3393622 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33936222012-07-11 Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials Matsen , Frederick A Evans, Steven N Algorithms Mol Biol Research BACKGROUND: There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise distances between leaves. Such representations involve a specific labeling of the vertices or at least the leaves, and so it is natural to attempt to identify trees by some feature of the associated matrices that is invariant under relabeling. An obvious candidate is the spectrum of eigenvalues (or, equivalently, the characteristic polynomial). RESULTS: We show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to zero using numerical methods. For the adjacency and Laplacian matrices, we show that the a priori more informative immanantal polynomials have no greater power to distinguish between trees. CONCLUSION: Our results show that a generic large binary tree is highly unlikely to be identified uniquely by common spectral invariants. BioMed Central 2012-05-21 /pmc/articles/PMC3393622/ /pubmed/22613173 http://dx.doi.org/10.1186/1748-7188-7-14 Text en Copyright ©2012 Matsen and Evans; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Matsen , Frederick A Evans, Steven N Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials |
title | Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials |
title_full | Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials |
title_fullStr | Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials |
title_full_unstemmed | Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials |
title_short | Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials |
title_sort | ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393622/ https://www.ncbi.nlm.nih.gov/pubmed/22613173 http://dx.doi.org/10.1186/1748-7188-7-14 |
work_keys_str_mv | AT matsenfredericka ubiquityofsynonymityalmostalllargebinarytreesarenotuniquelyidentifiedbytheirspectraortheirimmanantalpolynomials AT evansstevenn ubiquityofsynonymityalmostalllargebinarytreesarenotuniquelyidentifiedbytheirspectraortheirimmanantalpolynomials |