Cargando…

Insights into dynein motor domain function from a 3.3 Å crystal structure

Dyneins power the beating of cilia and flagella, transport various intracellular cargos and are important during mitosis. All dyneins have a ~300kDa motor domain consisting of a ring of six AAA+ domains. ATP hydrolysis in the AAA+ ring drives the cyclic relocation of a motile element, the linker dom...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidt, Helgo, Gleave, Emma S., Carter, Andrew P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393637/
https://www.ncbi.nlm.nih.gov/pubmed/22426545
http://dx.doi.org/10.1038/nsmb.2272
Descripción
Sumario:Dyneins power the beating of cilia and flagella, transport various intracellular cargos and are important during mitosis. All dyneins have a ~300kDa motor domain consisting of a ring of six AAA+ domains. ATP hydrolysis in the AAA+ ring drives the cyclic relocation of a motile element, the linker domain, to generate the force necessary for movement. How the linker interacts with the ring during the ATP hydrolysis cycle is not known. Here we present a 3.3Å crystal structure of the motor domain of Saccharomyces cerevisiae cytoplasmic dynein, crystallized in the absence of nucleotides. The linker is docked to a conserved site on AAA5, confirmed by mutagenesis as functionally important. Nucleotide soaking experiments show that the main ATP hydrolysis site in dynein (AAA1) is in a low nucleotide affinity conformation and reveal the nucleotide interactions of the other three sites (AAA2-4).