Cargando…

Enhancement of Implant Osseointegration by High-Frequency Low-Magnitude Loading

BACKGROUND: Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. METHODOLOGY: Titanium implants were bil...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaolei, Torcasio, Antonia, Vandamme, Katleen, Ogawa, Toru, van Lenthe, G. Harry, Naert, Ignace, Duyck, Joke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393711/
https://www.ncbi.nlm.nih.gov/pubmed/22808172
http://dx.doi.org/10.1371/journal.pone.0040488
Descripción
Sumario:BACKGROUND: Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. METHODOLOGY: Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test) while the other one was not (control). The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks). The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz) or low-frequency (LF, 8 Hz) loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM), respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1) HF-LM, 40 Hz-8 µm; 2) HF-HM, 40 Hz-16 µm; 3) LF-LM, 8 Hz-41 µm; 4) LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05. PRINCIPAL FINDINGS: After loading for 4 weeks, HF-LM loading (40 Hz-8 µm) induced more bone-to-implant contact (BIC) at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF) was found in the 2 experimental periods. CONCLUSIONS: The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz) low-magnitude (8 µm) loading. The applied load regimes failed to influence the peri-implant bone mass.